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Overview

• Brief overview of theoretical approaches to dark energy

• Links to observational tests for dark energy
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The key dark energy questions
• How do we modify Einstein’s Field Equations?

- Non-minimal couplings to gravity?

–Higher dimensional gravity?

–Effects of anisotropy and

inhomogeneity

Adjustment to gravity?

-An ‘exotic’, dynamical matter

component “Quintessence”?

– ‘Unified Dark Matter’?

Adjustment to matter?Cosmological constant “Λ”?

-“Vacuum energy” left over from

early phase transitions?

-Holographic?

-Anthropic?
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Distinctions between dark energy alternatives

Cosmological constant “Λ”?

• Purely affects background
expansion

• No fluctuations in energy
density

• Equation of state w=p/ρ,
w= -1 for all time
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Distinctions between dark energy alternatives

Adjustment to matter?Cosmological constant “Λ”?

• Purely affects background
expansion

• No fluctuations in energy
density

• Equation of state w=p/ρ,
w= -1 for all time

• Dynamical component from
V(φ), mainly affecting
background expansion

• Fluctuations modify
behavior on large scales

• Equation of state w =p/ρ

• w≠-1, w(z)

• ‘speed of sound’ cs
2=δp/δρ
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Distinctions between dark energy alternatives

Adjustment to gravity? Adjustment to matter?Cosmological constant “Λ”?

• Purely affects background
expansion

• No fluctuations in energy
density

• Equation of state w=p/ρ,
w= -1 for all time

• Modification of Einstein’s
equations beyond 4D FLRW

• Affects background and
fluctuation growth

• w(z), effective measure
from background evolution

• Distinct w(z) from structure
growth

• Other evidence from GR
tests (solar system,
equivalence principle)?

• Dynamical component from
V(φ), mainly affecting
background expansion

• Fluctuations modify
behavior on large scales

• Equation of state w =p/ρ

• w≠-1, w(z)

• ‘speed of sound’ cs
2=δp/δρ
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Overview

• Brief overview of theoretical approaches to dark energy

• Links to observational tests for dark energy
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Linking theory and observations

SN 1a HST Legacy, Essence,
DES, SNAP

Baryon Oscillations SDSS 
Alcock-Paczynski test

CMB WMAP

CMB/ Globular cluster 

Tests probing
background evolution

only

• Late time probes of w(z)

–  Luminosity distance vs. z

–  Angular diameter distance vs. z

• Probes of weff

–  Angular diameter distance to last
scattering

–  Age of the universe
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Linking theory and observations

Galaxy /cluster surveys, SZ and
X-rays from ICM
SDSS, ACT, APEX, DES, SPT

CMB and cross correlation
WMAP, PLANCK,  with SNAP, LSST, SDSS

Tests probing
perturbations and

background

Weak lensing CFHTLS, SNAP, DES, LSST 

• Late time probes of w(z)

–  Luminosity distance vs. z

–  Angular diameter distance vs. z

• Probes of weff

–  Angular diameter distance to last
scattering

–  Age of the universe

• Late time probes of w(z) and cs
2(z)

– Comoving volume * no. density vs. z

–  Shear convergence

– Late time ISW
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• Early time probes of ΩQ(z)
– Early expansion history sensitivity to

relativistic species

BBN/ CMB WMAP

Tests probing early
behavior of dark

energy

Linking theory and observations
• Late time probes of w(z)

–  Luminosity distance vs. z

–  Angular diameter distance vs. z

• Probes of weff

–  Angular diameter distance to last
scattering

–  Age of the universe

• Late time probes of w(z) and cs
2(z)

– Comoving volume * no. density vs. z

–  Shear convergence

– Late time ISW
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Linking theory and observations
• Late time probes of w(z)

–  Luminosity distance vs. z

–  Angular diameter distance vs. z

• Probes of weff

–  Angular diameter distance to last
scattering

–  Age of the universe

• Late time probes of w(z) and cs
2(z)

– Comoving volume * no. density vs. z

–  Shear convergence

– Late time ISW

• Early time probes of ΩQ(z)
– Early expansion history sensitivity to

relativistic species

• Alternate probes of non-minimal couplings
between dark energy and R/ matter or
deviations from Einstein gravity

–  Equivalence principle tests
–  Deviation of solar system orbits
–  Varying alpha tests

Tests probing
general deviations in
GR or 4D existence
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Sensitive to different epochs of evolution history

BBN
Bean, Hansen, Melchiorri

(2001)

Structure formation
(Doran et al 2002)

SN1a (68% CI)
Riess et al (2004)

ΩQ

lg(z+1)
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0
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0.4

0.6
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1.0

Weak Lensing (95% CI)
(CFHTLS + WMAP)
(Tereno et al 2004)

Scaling quintessence
Λ

Constraints on evolution history of the dark energy density

CMB (modeled as Nrel(zrec))
Ferreira & Joyce (1999)
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Evolution of H(z) is the primary observable
• In a flat universe, many measures

based on the comoving distance

• Luminosity distance

• Angular diameter distance

• Comoving volume element

• Age of universe

r(z) = ∫0
z dz’ / H(z’)

dL(z) = r(z) (1+z)

dA(z) = r(z) / (1+z)

dV/dzd"(z) = r2(z) / H(z)

t(z) = ∫ z∞ dz/[(1+z)H(z)] 

But fluctuations promise to be significant ….
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… leveraging evolution on different spatial scales

From Max Tegmark for SDSS



15/30

Current observations provide consistent constraints

SNAP prospective
Huterer & Turner 2001

Spergel et al. 2003

Angular diameter
distance to last
scatteringLuminosity

distance to SN1a

Linear growth
factor to galaxy

Combined constraints on equation of state
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z evolution of luminosity distance of Supernovae in HST/Goods survey

& first evidence of earlier period of deceleration

z

Riess et al 2004

z
0.0 0.5 1.0 1.5 2.0
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Inference based purely on background evolution

Spergel et al. 2003

Combined constraints on equation of state

• Implicit priors in this ‘consistent’ picture:
– a constant w in a FLRW metric
– no dark energy clustering
– Einstein gravity

• Do these implicit assumptions bias our
interpretation?

• Can we test for different properties of
dark energy rather than making implicit
assumptions about them?
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• Ansatz for H(z), dl(z) or w(z)

• w(z) applies well to scalar fields as well as
many extensions to gravity Linder 2003

–Taylor expansions robust for low-z

• Do parameterizations relate to microphysical
properties  (w=p/ρ, and cs

2 = δp/δρ) or just an
effective description?

–Need to have multi pronged observational
approach

Reconstructing dark energy : a cautionary note
� But, parameterizations can mislead

Maor et al 2002

Reconstructing dynamic evolution
w=-0.7+0.8z with constant w

Constant
 w fit

w>-1 fit
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Uncertainties in other cosmological parameters
• H0 probably not going to be measured to

better than 1% accuracy

• Intrinsic curvature/ DE degeneracy

• Neutrino mass uncertainties expand w
constraints

SN

WMAP

w

-1.0

-1.5

-2.0

-2.5
0. 0.5 mv (eV) 1.0 1.5

-0.5
WMAP+SDSS+SN1a
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• Dark energy domination suppresses growth
in gravitational potential wells , Ψ

∇2 Φ = 4π Ga2 ρδ

• Late time Integrated Sach’s Wolfe effect
(ISW) in CMB photons results

- Net blue shifting of photons as they
traverse gravitational potential well of
baryonic and dark matter on way.

• ISW important at large scales

• Dark energy clustering counters suppression
due to accelerative expansion

–Decreases ISW signature

Ψ(x)

x(t)

With clustering

No clustering

CMB spectra for DE models incl/excl perturbations

w<-1 w>-1

without

with

without

with

Hu 1998, Bean & Dore PRD 69 2003

ISW: Dark energy signature in CMB photons
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• Degeneracies & cosmic variance
prevent constraints on clustering itself

–Large scale anisotropies also altered
by spectral tilt, running in the tilt and
tensor modes

• Dark energy clustering will be factor in
combining future high precision CMB
with supernova data.

• Avoid degeneracies by cross
correlating ISW with other observables

– galaxy number counts
– Radio source counts
– Weak lensing of galaxies or CMB

ISW: Perturbations and CMB & LSS inferences

Bean & Dore 2003

Matter density Matter density

w w

Constraints on w from CMB+ SN1a incl/excl perturbations

‘Constraints’ on w and cs
2 from WMAP
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Cross correlation of radio source number
counts and WMAP  ISW
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ISW: CMB cross correlation with LSS
• ISW intimately related to matter distribution

• Observed cross-correlation of CMB ISW with LSS.
e.g. NVSS radio source survey (Boughn & Crittenden
2003 Nolta et al 2003, Scranton et al 2003)

• Current observations cannot distinguish dark energy
features (Bean and Dore PRD 69 2003) ,

• But Future large scale surveys which are deep, ~z=2,
such as LSST might well be able to (if w≠ -1) (Hu and
Scranton 2004)

Nolta et al 2003
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Dark energy prospects : cluster counts from SZ
• The passage of the CMB through a hot e- cloud distorts

the spectrum of the γCMB due to Compton interactions

• Due to the high energy of the e-‘s, and the homogeneity
and isotropy of the CMB, the γ gain energy.

• SZ signal not attenuated with z
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SZ effect on CMB blackbody spectrum

SZ effect translates into decrement in TCMB

SZA, ACT,
SPT/DES,
APEX, QUIET…

de Oliveira-Costa

SZ in new regime of CMB observations
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Comparison against w=-1 for same h,  Ωc h2

Ωbh2

• Volume element has better sensitivity to w and w’
than luminosity distance

• Number counts related to underlying matter
distribution and δc(z) add complications

–  inherent modeling sensitivity

Dark energy prospects : cluster counts from SZ

dV/dzdΩ (z) = r2(z) / H(z)

e.g. cluster mass function Jenkins et. al 2000
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• Uncertainty in of mass-scaling relations from
theoretical cluster physics modeling

• Effects of radiative cooling and pre-heating on
mass - SZ/ Xray luminosities scaling relations

 cluster mass (Msol/h)z

10-5

10-6

10-7

10-8

Cluster mass- SZ scaling relation dependency on
cluster model

1013 1014 1015

With radiative
cooling

Non-radiative
cooling

Cluster masses from SZ : systematic concerns

daSilva et al 2003

• Equates to a systematic error in cluster mass
estimate, to which matter content and DE
parameters are exponentially sensitive
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Effect of mass bias on cosmological parameter
estimation from Planck-like +ACT-like surveys
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A.  Refregier

Weak lensing: avoids baryon physics biases
• Weak lensing uses all the mass information not just luminous matter (baryons)
• Lensing of the images of galaxies and quasars and of the Cosmic Microwave Background

more distant than the lensing halo

Seljak and
Zaldarriaga
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w

Ωm
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Constraints from CFHT Legacy Survey
Wide Field Survey (22sq deg)

Constraints on CDM density and dark energy
equation of state

1.0

Hoekstra et al 2005, Semboloni et al 2005
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Weak lensing tomography :prospects

• SNAP and LSST offer amazing prospects for WL
– SNAP measuring 100 million galaxies over 300 sqdeg

• Spectroscopic followup of galaxy surveys allow redshift
slicing (tomography)

• Tomography => bias independent z evolution of DE

• Possibly apply technique to compare dark energy theories ?

• Understanding theoretical and observational systematics key
– effect of non-linearities in power spectrum
– Reconstructing anisotropic point spread function
–  z-distribution of background sources and foreground halo
–  inherent ellipticities …

SNAP collaboration
Aldering et al 2004

Deep 
survey

Wide survey

SNAP
SN1a

w
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Wide survey+
non-Gaussian info

ΩM

Prospective constraints on w from
the SNAP SN1a + WL measurements
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Acoustic baryon oscillations

• Systematics do not create oscillatory features in
correlation spectrum (Seo and Eisenstein 2003) but
still need to be characterised.

– Dust extinction,
– galaxy bias,
– redshift distortion
– non-linear corrections

w

Ωmh2

Eisenstein et al 2004

~48000 galaxies
z=0.35
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Linking Dark Energy Observations and Theory
• Theories are making testable predictions

– from horizon scales (dark energy perturbations) down to solar system scales (modified
gravity)

• Still outstanding issues about other cosmological parameter uncertainties
– Hubble’s constant, neutrino mass and intrinsic spatial curvature

• Significant broadening of cosmological constraints in the next 5-10 years
– Order of magnitude increase in number of high z SN1a and galaxies
– with a lever arm tying down both large (ISW) and small scale (SZ, weak lensing, baryon

acoustic oscillations) anisotropies
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Linking Dark Energy Observations and Theory

Einstein on Theory:
“If an idea does not appear absurd at

first then there is no hope for it”

Einstein on Observation:
"Joy in looking and comprehending
is nature's most beautiful gift.”


